

wegina and w.

The Grüneisen parameters for the librational modes were obtained using the data in Table VI. In Figs. 5-7, constructed from this data, $\ln\omega$ is plotted versus $\ln V$ for each of the modes. Also shown in Fig. 5 are data points for the E_{ϵ} mode from sample 6. The data points were fitted to a straight line, shown by solid lines in the figures. The negative slope of each line is the Grüneisen parameter for that particular mode. The Grüneisen

FIG. 7. Plot of $\ln\omega$ versus $\ln V$ for the high-frequency T_{ε} mode of the α phase, where the frequency ω is in cm⁻¹ and the molar volume V is in cm³/mole: x, experimental points; —, best fit to a straight line.

a manager of a spirit of the second free parameters and estimated errors were determined using a least square fit. The results are summarized in Table VII. The measured Grüneisen parameters are.independent of temperature within the experimental errors. They are substantially higher than the result of $\frac{5}{6}$ ex--pected for a quadrupolar interaction potential in the quasiharmonic approximation. This result of $\frac{5}{6}$ follows from the relation $\omega^2 \propto r^{-5}$ between the librational frequency ω and the intermolecular distance r. The spectroscopic values are closer to the value $1.0 \le \gamma \le 1.5$ obtained by Brookeman, McEnman, and Scott³⁹ using nuclear quadrupole resonance methods. Zunger and Huler³⁶ used a 6-12 atom-atom potential and obtained Grüneisen parameters around 3 for the librational modes of the α phase. Raich, Gillis, and Anderson⁴⁹ used this potential in a self-consistent calculation and obtained Grüneisen parameters 15%-50% Samers and same Links This said a single a

ardanas bada seria desta de la constante de la

TABLE VI. Volume dependence of the Raman spectrum in the α -phase.

T (°K)	(cm ⁻	intensity) T_{ε}	T.	Relative peak intensities $E_g:T_g:T_g$	Molar volume (cm ³ /mole)
1 2.755	33. 3ª	37.5ª	61, 3(4, 5)	3.6:1:0.05	26.82
8	35.6(0.8)	39.7(0.8)	65,0(5)	3.6:1:0.05	25.87
	38.2(0.8)	42.0(0.8)	69.0(5)	4.2:1:<0.05	25.00
	33.0(1.7)	37.2(1.7)	61.0(5.5)	4.7:1:0.05	26,83
18	35.5(1.7)	39.5(1.7)	64.8(6)	5,2:1:<0.05	25.87
. · · · ·	38.0(1.7)	41.9(1.7)	68.6(6)	5.5:1:<0.05	25.01
18.	32,3(8)				26.84
33	34.6(8)			***	25.88
	37.0(8)				25.02

^aThese lines are very narrow and the linewidths cannot be resolved from the instrumental widths.